On a conjecture of Conlon, Fox and Wigderson
主 讲 人 :林启忠 教授
活动时间:08月05日10时00分
地 点 :腾讯会议 765-661-933
讲座内容:
For graphs G and H, the Ramsey number r(G,H) is the smallest positive integer N such that any red/blue edge coloring of the complete graph K_N contains either a red G or a blue H. A book B_n is a graph consisting of n triangles all sharing a common edge. Recently, Conlon, Fox and Wigderson (2023) conjecture that for any 0<\alpha<1, the random lower bound r(B_{\lceil\alpha n\rceil},B_n)\ge (\sqrt{\alpha}+1)^2n+o(n) would not be tight. In other words, there exists some constant \beta=\beta(\alpha)>0 such that r(B_{\lceil\alpha n\rceil},B_n)\ge (\sqrt{\alpha}+1)^2n+\beta n for all sufficiently large n. This conjecture clearly holds for every \alpha< 1/6 from an early result of Nikiforov and Rousseau (2005), i.e., for every \alpha< 1/6 and large n, r(B_{\lceil\alpha n\rceil},B_n)=2n+3.
We disprove the conjecture of Conlon et al. (2023). Indeed, we show that the random lower bound is asymptotically tight for every 1/4\leq \alpha\leq 1. Moreover, we show that for any 1/6\leq \alpha\le 1/4 and large n, r(B_{\lceil\alpha n\rceil},B_n)\le\left(\frac 32+3\alpha\right) n+o(n), where the inequality is asymptotically tight when \alpha=1/6 or 1/4. We also give a lower bound of r(B_{\lceil\alpha n\rceil},B_n) for 1/6\le\alpha<\frac{52-16\sqrt{3}}{121}\approx0.2007, showing that the random lower bound is not tight, i.e., the conjecture of Conlon et al. (2023) holds in this interval.
Joint work with Chunchao Fan and Yuanhui Yan.
主讲人介绍:
林启忠,福州大学教授,博士生导师。2009年7月毕业于同济大学数学系,获理学博士学位,导师李雨生教授,学位论文为上海市优秀博士学位论文。于2014.08-2015.08在美国加州大学圣地亚哥分校(UCSD)访学一年,导师金芳蓉(Fan Chung)院士。研究内容主要包括图的Ramsey理论及相关极值图论问题,涉及Szemeredi正则引理、概率方法、代数构造等。与李雨生教授合著在Springer出版关于Ramsey理论专著1本,在主流核心刊物European J. Combin、J. Combin. Theory Ser. A、J. Graph Theory、Sci. China Math.、 SIAM J. Discrete Math.等发表论文多篇。主持4项国家自然科学基金项目以及1项福建省重点项目等。现任中国数学会组合数学与图论专业委员会委员。获邀第九届世界华人数学家大会45分钟报告。